Range Image Sequence Analysis by 2.5-d Least Squares Tracking with Variance Component Estimation and Robust Variance Covariance Matrix Estimation

نویسندگان

  • Patrick Westfeld
  • René Hempel
چکیده

In this article, a range image sequence tracking approach is proposed, which combines 3-D camera intensity and range observations in an integrated geometric transformation model. Based on 2-D least squares matching, a closed solution for intensity and range observations has been developed. By combining complementary information, an increase in accuracy and reliability can be achieved. The weighting of the two different types of observations with a-priori unknown quality is performed by variance component estimation. To fulfill the requirements of robust variance covariance matrix estimation in statistical context, alternative approaches for variance covariance matrix calculation are proposed and evaluated. To verify its applicability, reliability and accuracy potential, the introduced 2.5-D least squares tracking technique has been evaluated by several series of experiments in the field of human motion and interaction measurement.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Least-Squares Variance Component Estimation: Theory and GPS Applications

Data processing in geodetic applications often relies on the least-squares method, for which one needs a proper stochastic model of the observables. Such a realistic covariance matrix allows one first to obtain the best (minimum variance) linear unbiased estimator of the unknown parameters; second, to determine a realistic precision description of the unknowns; and, third, along with the distri...

متن کامل

The Influence Function of Stahel-donoho Type Methods for Robust Covariance Estimation and Pca

Principal component analysis (PCA) is a popular technique to reduce the dimension of the data at hand. Since PCA is based on the empirical variance-covariance matrix, the estimates can be severely damaged by outliers. To reduce these effects, several robust methods were developed, mostly by replacing the classical variance-covariance matrix by a robust version. In this paper we focus on Stahel-...

متن کامل

Fast algorithms for least-squares-based minimum variance spectral estimation

The minimum variance (MV) spectral estimator is a robust high-resolution frequencydomain analysis tool for short data records. The traditional formulation of the minimum variance spectral estimation (MVSE) depends on the inverse of a Toeplitz autocorrelation matrix, for which a fast computational algorithm exists that exploits this structure. This paper extends the MVSE approach to two data-onl...

متن کامل

Retrieving Three Dimensional Displacements of InSAR Through Regularized Least Squares Variance Component Estimation

Measuring the 3D displacement fields provide essential information regarding the Earth crust interaction and the mantle rheology. The interferometric synthetic aperture radar (InSAR) has an appropriate capability in revealing the displacements of the Earth’s crust. Although, it measures the real 3D displacements in the line of sight (LOS) direction. The 3D displacement vectors can be retrieved ...

متن کامل

Least Tail-Trimmed Squares for In...nite Variance Autoregressions

We develop a robust least squares estimator for autoregressions with possibly heavy tailed errors. Robustness to heavy tails is ensured by negligibly trimming the squared error according to extreme values of the error and regressors. Tail-trimming ensures asymptotic normality and superp -convergence with a rate comparable to the highest achieved amongst M-estimators for stationary data. Moreov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008